SAGA.sim_hydrology.2: TOPMODEL

Simple Subcatchment Version of TOPMODEL<br/><br/>Based on the 'TOPMODEL demonstration program v95.02' by Keith Beven (Centre for Research on Environmental Systems and Statistics, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster LA1 4YQ, UK) and the C translation of the Fortran source codes implemented in GRASS.<br/><br/>This program allows single or multiple subcatchment calculations but with single average rainfall and potential evapotranspiration inputs to the whole catchment. Subcatchment discharges are routed to the catchment outlet using a linear routing algorithm with constant main channel velocity and internal subcatchment routing velocity. The program requires ln(a/tanB) distributions for each subcatchment. These may be calculated using the GRIDATB program which requires raster elevation data as input. It is recommended that those data should be 50 m resolution or better.<br/><br/>NOTE that TOPMODEL is not intended to be a traditional model package but is more a collection of concepts that can be used **** where appropriate ****. It is up to the user to verify that the assumptions are appropriate (see discussion in Beven et al.(1994). This version of the model will be best suited to catchments with shallow soils and moderate topography which do not suffer from excessively long dry periods. Ideally predicted contributing areas should be checked against what actually happens in the catchment.<br/><br/>It includes infiltration excess calculations and parameters based on the exponential conductivity Green-Ampt model of Beven (HSJ, 1984) but if infiltration excess does occur it does so over whole area of a subcatchment. Spatial variability in conductivities can however be handled by specifying Ko parameter values for different subcatchments, even if they have the same ln(a/tanB) and routing parameters, ie. to represent different parts of the area.<br/><br/>Note that time step calculations are explicit ie. SBAR at start of time step is used to determine contributing area. Thus with long (daily) time steps contributing area depends on initial value together with any volume filling effect of daily inputs. Also baseflow at start of time step is used to update SBAR at end of time step.<br/><br/>References<br/>- Beven, K., Kirkby, M.J., Schofield, N., Tagg, A.F. (1984): Testing a physically-based flood forecasting model (TOPMODEL) for threee U.K. catchments, Journal of Hydrology, H.69, S.119-143.<br/><br/>- Beven, K. (1997): TOPMODEL - a critique, Hydrological Processes, Vol.11, pp.1069-1085.<br/>

Inputs

Topographic Wetness Index

format
href
Please set a value for ATANB.

Weather Records

format
href
Please set a value for WEATHER.

Precipitation [m / dt]

format
href
Please set a value for RECORD_P.

Evapotranspiration [m / dt]

format
href
Please set a value for RECORD_ET.

Date/Time

format
href
Please set a value for RECORD_DATE.

Time Step [h]

number

Number of Classes

integer

Initial subsurface flow per unit area [m/h]

number

Areal average of ln(T0) = ln(Te) [ln(m^2/h)]

number

Model parameter [m]

number

Initial root zone storage deficit [m]

number

Maximum root zone storage deficit [m]

number

Unsaturated zone time delay per unit storage deficit [h]

number

Main channel routing velocity [m/h]

number

Internal subcatchment routing velocity [m/h]

number

Surface hydraulic conductivity [m/h]

number

Wetting front suction [m]

number

Water content change across the wetting front

number

Green-Ampt Infiltration

boolean

Outputs

Soil Moisture Deficit

format
transmission

Simulation Output

format
transmission

Execution options

successUri
inProgressUri
failedUri

format

mode

Execute End Point

View the execution endpoint of a process.

View the alternative version in HTML.

{"id": "SAGA.sim_hydrology.2", "title": "TOPMODEL", "description": "Simple Subcatchment Version of TOPMODEL<br/><br/>Based on the 'TOPMODEL demonstration program v95.02' by Keith Beven (Centre for Research on Environmental Systems and Statistics, Institute of Environmental and Biological Sciences, Lancaster University, Lancaster LA1 4YQ, UK) and the C translation of the Fortran source codes implemented in GRASS.<br/><br/>This program allows single or multiple subcatchment calculations but with single average rainfall and potential evapotranspiration inputs to the whole catchment. Subcatchment discharges are routed to the catchment outlet using a linear routing algorithm with constant main channel velocity and internal subcatchment routing velocity. The program requires ln(a/tanB) distributions for each subcatchment. These may be calculated using the GRIDATB program which requires raster elevation data as input. It is recommended that those data should be 50 m resolution or better.<br/><br/>NOTE that TOPMODEL is not intended to be a traditional model package but is more a collection of concepts that can be used **** where appropriate ****. It is up to the user to verify that the assumptions are appropriate (see discussion in Beven et al.(1994). This version of the model will be best suited to catchments with shallow soils and moderate topography which do not suffer from excessively long dry periods. Ideally predicted contributing areas should be checked against what actually happens in the catchment.<br/><br/>It includes infiltration excess calculations and parameters based on the exponential conductivity Green-Ampt model of Beven (HSJ, 1984) but if infiltration excess does occur it does so over whole area of a subcatchment. Spatial variability in conductivities can however be handled by specifying Ko parameter values for different subcatchments, even if they have the same ln(a/tanB) and routing parameters, ie. to represent different parts of the area.<br/><br/>Note that time step calculations are explicit ie. SBAR at start of time step is used to determine contributing area. Thus with long (daily) time steps contributing area depends on initial value together with any volume filling effect of daily inputs. Also baseflow at start of time step is used to update SBAR at end of time step.<br/><br/>References<br/>- Beven, K., Kirkby, M.J., Schofield, N., Tagg, A.F. (1984): Testing a physically-based flood forecasting model (TOPMODEL) for threee U.K. catchments, Journal of Hydrology, H.69, S.119-143.<br/><br/>- Beven, K. (1997): TOPMODEL - a critique, Hydrological Processes, Vol.11, pp.1069-1085.<br/>", "version": "1.0.0", "jobControlOptions": ["sync-execute", "async-execute", "dismiss"], "outputTransmission": ["value", "reference"], "links": [{"rel": "http://www.opengis.net/def/rel/ogc/1.0/execute", "type": "application/json", "title": "Execute End Point", "href": "http://demo.mapmint.com/ogc-api/processes/SAGA.sim_hydrology.2/execution"}, {"rel": "alternate", "type": "text/html", "title": "Execute End Point", "href": "http://demo.mapmint.com/ogc-api/processes/SAGA.sim_hydrology.2/execution.html"}], "inputs": {"ATANB": {"title": "Topographic Wetness Index", "description": "Topographic Wetness Index", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "application/x-ogc-envi", "application/x-ogc-aaigrid", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "ATANB"}, "WEATHER": {"title": "Weather Records", "description": "Weather Records", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "WEATHER"}, "RECORD_P": {"title": "Precipitation [m / dt]", "description": "Precipitation [m / dt]", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "RECORD_P"}, "RECORD_ET": {"title": "Evapotranspiration [m / dt]", "description": "Evapotranspiration [m / dt]", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "RECORD_ET"}, "RECORD_DATE": {"title": "Date/Time", "description": "Date/Time", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "RECORD_DATE"}, "DTIME": {"title": "Time Step [h]", "description": "Time Step [h]", "schema": {"type": "number", "default": 1, "format": "double", "nullable": true}, "id": "DTIME"}, "NCLASSES": {"title": "Number of Classes", "description": "Number of Classes", "schema": {"type": "integer", "default": 30, "nullable": true}, "id": "NCLASSES"}, "P_QS0": {"title": "Initial subsurface flow per unit area [m/h]", "description": "Initial subsurface flow per unit area [m/h]", "schema": {"type": "number", "default": 3.3e-05, "format": "double", "nullable": true}, "id": "P_QS0"}, "P_LNTE": {"title": "Areal average of ln(T0) = ln(Te) [ln(m^2/h)]", "description": "Areal average of ln(T0) = ln(Te) [ln(m^2/h)]", "schema": {"type": "number", "default": 5, "format": "double", "nullable": true}, "id": "P_LNTE"}, "P_MODEL": {"title": "Model parameter [m]", "description": "Model parameter [m]", "schema": {"type": "number", "default": 0.032, "format": "double", "nullable": true}, "id": "P_MODEL"}, "P_SR0": {"title": "Initial root zone storage deficit [m]", "description": "Initial root zone storage deficit [m]", "schema": {"type": "number", "default": 0.002, "format": "double", "nullable": true}, "id": "P_SR0"}, "P_SRZMAX": {"title": "Maximum root zone storage deficit [m]", "description": "Maximum root zone storage deficit [m]", "schema": {"type": "number", "default": 0.05, "format": "double", "nullable": true}, "id": "P_SRZMAX"}, "P_SUZ_TD": {"title": "Unsaturated zone time delay per unit storage deficit [h]", "description": "Unsaturated zone time delay per unit storage deficit [h]", "schema": {"type": "number", "default": 50, "format": "double", "nullable": true}, "id": "P_SUZ_TD"}, "P_VCH": {"title": "Main channel routing velocity [m/h]", "description": "Main channel routing velocity [m/h]", "schema": {"type": "number", "default": 3600, "format": "double", "nullable": true}, "id": "P_VCH"}, "P_VR": {"title": "Internal subcatchment routing velocity [m/h]", "description": "Internal subcatchment routing velocity [m/h]", "schema": {"type": "number", "default": 3600, "format": "double", "nullable": true}, "id": "P_VR"}, "P_K0": {"title": "Surface hydraulic conductivity [m/h]", "description": "Surface hydraulic conductivity [m/h]", "schema": {"type": "number", "default": 1, "format": "double", "nullable": true}, "id": "P_K0"}, "P_PSI": {"title": "Wetting front suction [m]", "description": "Wetting front suction [m]", "schema": {"type": "number", "default": 0.02, "format": "double", "nullable": true}, "id": "P_PSI"}, "P_DTHETA": {"title": "Water content change across the wetting front", "description": "Water content change across the wetting front", "schema": {"type": "number", "default": 0.1, "format": "double", "nullable": true}, "id": "P_DTHETA"}, "BINF": {"title": "Green-Ampt Infiltration", "description": "Green-Ampt Infiltration", "schema": {"type": "boolean", "default": false, "enum": ["true", "false"], "nullable": true}, "id": "BINF"}}, "outputs": {"MOIST": {"title": "Soil Moisture Deficit", "description": "Soil Moisture Deficit", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "application/x-ogc-envi", "application/x-ogc-aaigrid", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-envi"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "application/x-ogc-aaigrid"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "MOIST"}, "TABLE": {"title": "Simulation Output", "description": "Simulation Output", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/csv", "text/csv"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/csv"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "text/csv"}]}, "id": "TABLE"}}}

http://demo.mapmint.com/ogc-apihttp://localhost/ogc-api/processes/SAGA.sim_hydrology.2.html
Last modified: Sat Feb 19 15:43:34 CET 2022