OTB.ImageClassifier: Performs a classification of the input image according to a model file.
This application performs an image classification based on a model file produced by the TrainImagesClassifier application. Pixels of the output image will contain the class labels decided by the classifier (maximal class label = 65535). The input pixels can be optionally centered and reduced according to the statistics file produced by the ComputeImagesStatistics application. An optional input mask can be provided, in which case only input image pixels whose corresponding mask value is greater than 0 will be classified. By default, the remaining of pixels will be given the label 0 in the output image.
Execute End Point
View the execution endpoint of a process.
View the alternative version in HTML.
{"id": "OTB.ImageClassifier", "title": "Performs a classification of the input image according to a model file.", "description": "This application performs an image classification based on a model file produced by the TrainImagesClassifier application. Pixels of the output image will contain the class labels decided by the classifier (maximal class label = 65535). The input pixels can be optionally centered and reduced according to the statistics file produced by the ComputeImagesStatistics application. An optional input mask can be provided, in which case only input image pixels whose corresponding mask value is greater than 0 will be classified. By default, the remaining of pixels will be given the label 0 in the output image.", "version": "1.0.0", "jobControlOptions": ["sync-execute", "async-execute", "dismiss"], "outputTransmission": ["value", "reference"], "links": [{"rel": "http://www.opengis.net/def/rel/ogc/1.0/execute", "type": "application/json", "title": "Execute End Point", "href": "http://demo.mapmint.com/ogc-api/processes/OTB.ImageClassifier/execution"}, {"rel": "alternate", "type": "text/html", "title": "Execute End Point", "href": "http://demo.mapmint.com/ogc-api/processes/OTB.ImageClassifier/execution.html"}], "inputs": {"in": {"title": "The input image to classify.", "description": "The input image to classify.", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "in"}, "mask": {"title": "The mask allows restricting classification of the input image to the area where mask pixel values are greater than 0.", "description": "The mask allows restricting classification of the input image to the area where mask pixel values are greater than 0.", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "mask"}, "model": {"title": "A model file (produced by TrainImagesClassifier application, maximal class label = 65535).", "description": "A model file (produced by TrainImagesClassifier application, maximal class label = 65535).", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "model"}, "imstat": {"title": "A XML file containing mean and standard deviation to center and reduce samples before classification (produced by ComputeImagesStatistics application).", "description": "A XML file containing mean and standard deviation to center and reduce samples before classification (produced by ComputeImagesStatistics application).", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["text/xml"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/xml"}]}}}], "nullable": true}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "utf-8", "contentMediaType": "text/xml"}]}, "id": "imstat"}, "nodatalabel": {"title": "By default, hidden pixels will have the assigned label 0 in the output image. It's possible to define the label mask by another value, but be careful to not take a label from another class (max. 65535).", "description": "By default, hidden pixels will have the assigned label 0 in the output image. It's possible to define the label mask by another value, but be careful to not take a label from another class (max. 65535).", "schema": {"type": "integer", "default": 0, "nullable": true}, "id": "nodatalabel"}, "out": {"title": "Output image containing class labels", "description": "Output image containing class labels", "schema": {"type": "string", "default": "uint8", "enum": ["uint8", "uint16", "int16", "int32", "int32", "float", "double"]}, "id": "out"}, "confmap": {"title": "Confidence map of the produced classification. The confidence index depends on the model : - LibSVM : difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample) - OpenCV * Boost : sum of votes * DecisionTree : (not supported) * GradientBoostedTree : (not supported) * KNearestNeighbors : number of neighbors with the same label * NeuralNetwork : difference between the two highest responses * NormalBayes : (not supported) * RandomForest : Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now. * SVM : distance to margin (only works for 2-class models)", "description": "Confidence map of the produced classification. The confidence index depends on the model : - LibSVM : difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample) - OpenCV * Boost : sum of votes * DecisionTree : (not supported) * GradientBoostedTree : (not supported) * KNearestNeighbors : number of neighbors with the same label * NeuralNetwork : difference between the two highest responses * NormalBayes : (not supported) * RandomForest : Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now. * SVM : distance to margin (only works for 2-class models)", "schema": {"type": "string", "default": "uint8", "enum": ["uint8", "uint16", "int16", "int32", "int32", "float", "double"], "nullable": true}, "id": "confmap"}, "ram": {"title": "Available memory for processing (in MB)", "description": "Available memory for processing (in MB)", "schema": {"type": "integer", "default": 128, "nullable": true}, "id": "ram"}}, "outputs": {"out": {"title": "Output image containing class labels", "description": "Output image containing class labels", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "out"}, "confmap": {"title": "Confidence map of the produced classification. The confidence index depends on the model : - LibSVM : difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample) - OpenCV * Boost : sum of votes * DecisionTree : (not supported) * GradientBoostedTree : (not supported) * KNearestNeighbors : number of neighbors with the same label * NeuralNetwork : difference between the two highest responses * NormalBayes : (not supported) * RandomForest : Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now. * SVM : distance to margin (only works for 2-class models)", "description": "Confidence map of the produced classification. The confidence index depends on the model : - LibSVM : difference between the two highest probabilities (needs a model with probability estimates, so that classes probabilities can be computed for each sample) - OpenCV * Boost : sum of votes * DecisionTree : (not supported) * GradientBoostedTree : (not supported) * KNearestNeighbors : number of neighbors with the same label * NeuralNetwork : difference between the two highest responses * NormalBayes : (not supported) * RandomForest : Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 majority classes) is not available for now. * SVM : distance to margin (only works for 2-class models)", "extended-schema": {"oneOf": [{"allOf": [{"$ref": "http://zoo-project.org/dl/link.json"}, {"type": "object", "properties": {"type": {"enum": ["image/tiff", "image/jpeg", "image/png"]}}}]}, {"type": "object", "required": ["value"], "properties": {"value": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}}}]}, "schema": {"oneOf": [{"type": "string", "contentEncoding": "base64", "contentMediaType": "image/tiff"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/jpeg"}, {"type": "string", "contentEncoding": "base64", "contentMediaType": "image/png"}]}, "id": "confmap"}}}
Display original data as JSON
http://demo.mapmint.com/ogc-apihttp://localhost/ogc-api/localhost/ogc-api/processes/OTB.ImageClassifier.html Last modified: Sat Feb 19 15:43:34 CET 2022